

# Southampton

#### *The µ-VIS micro-focus CT Centre*

A shared multi-disciplinary centre for high resolution X-ray computed tomography

#### X-ray CK-oagicarlyfgeldmetriporesalisc parts

#### Dr. M.N. Mavrogordato

µ-VIS CT Imaging Centre University of Southampton, United Kingdom.

mnm100@soton.ac.uk muvis@soton.ac.uk

www.muvis<sub>2</sub>org

## $\mu$ -VIS:

 £2.2M startup investment by EPSRC (£1.9M) & UoS (0.3M) Southampton

1

Benchtop CT 160Xi

Southampton

ikon

IDL

simpleware

VGStudio MAX

Med-X

- 7 micro focus X-CT systems:
  - Benchtop 160 (Nikon Metrology, UK).
  - XT H225 L with custom robotic sample exchanger (Nikon Metrology, UK).
  - Custom built dual source (450/225kV) walk in room (Nikon Metrology, UK).
  - Zeiss Xradia versa 510 (Carl Zeiss X-ray Microscopy Inc., USA)
  - SkyScan 1176 in-vivo CT scanner
  - Nikon Med-X (alpha)
  - MetalJet dual beam system (in development)

#### • Dedicated image analysis suite

- 13 high-specification, dual-socket workstations with between 96 512 GiB RAM each
- > Dedicated fast 10Gbit data transfer network.
- Dedicated, high speed storage with over 350 TB raw capacity
- > Leading commercial and open-source software packages available







# *AM components & considerations – Wish list for X–CT inspection*

- Be able to provide non-destructive means for:
  - Actual-nominal comparisons
  - Defect detection and quantification
  - Porosity analysis/distribution
  - Internal surface roughness characterisation
  - Image based modelling
  - Support for other inspection techniques
- Able to cope with a wide range of:
  - Material types
  - Geometries
  - Sizes
  - Densities

- Whilst giving:
  - High resolution
  - High accuracy
- And being:
  - Low cost
  - Fast
  - Traceable



3D-printed pharmaceutical with actual-nominal comparison via X-CT: EJPB (under review)

# *AM components & considerations – X–CT reality*

#### • Resolutions requirements

- The closer you look, the more you see (if you can)
- If you can't see it it might still be there
- If you can see it it probably is there
- Limited by swept radius (maybe)
- Trade off between resolution and field of view

#### Speed/cost

- Contrast to noise
- False economies
- Appropriate configurations/mounting/settings
- Geometrical considerations and measurement uncertainties
  - Both of part and X-CT system
  - Scatteretbeam hardening, and other arteria oteretere
  - Hard edges, laterally extended objects, physical size

Micrometre

## Using CT for geometrical measurement – Secure foundations



Beam alignment and focus Source height Detector tilt X-axis backoff Source – Mag zero Source – Detector distance "Settings": kV, power, projections, exposure, filtration etc. *Vanilla (AM) parts: Small, cylindrical, low(ish) density (Stainless Steel) – The Resistojet* 





Electrically heated element

Photograph courtesy of Matthew Robinson (UoS PhD student working on the project)

Images taken from Romei et al. Acta Astronautica, 2017, 138, 356-368 Propellant fluid (e.g. Nitrous oxide) 8

# *Vanilla (AM) parts: Small, cylindrical, low(ish) density (Stainless Steel)*



## AM components & considerations



# *AM parts: Small, cylindrical, high density (Tantalum)*







Helical scan courtesy of Oliver Larkin (Nikon Metrology UK) <sup>15</sup>

### Non-standard trajectory acquisition



O'brien et al, Journal of X-Ray Science and Technology, 2016, 24(5), 691-707

### Model constrained reconstruction methods

- 3 year EPSRC funded project *start date 01/01/2018*
- Use CAD data to constrain x-ray tomographic reconstruction:
  - Reduced angle scans give a lot of info in some directions, but little
  - Priori inj recon gi
  - For AM roughne



# Despite all the tools, everything still depends

The Operators



Katy Rankin

Consultancy

Southampton

on...



Orestis L. Katsamenis

Teaching

Research

\*\*\*

Mark N. Mavrogordato

Sharif I. Ahmed

Outreach









Tiina Roose



## Acknowledgements:

- Orestis Katsamenis (μ-VIS, University of Southampton) AM Pharmaceutical Actual/nominal
- Angelo Grubisic, Federico Romei, Matthew Robinson, Chris Ogunlesi, Sharif Ahmed (University of Southampton) – Resistojets
- Scott Walker Redshift honeycomb structures
- Oliver Larkin, Ian Haig (Nikon Metrology, UK) provision of helical scans using metrology system, plus actual-actual comparison
- Thomas Blumensath, Neil O'Brien, Charles Wood ATI funded project CAN
- Thomas Bluemensath, Richard Boardman, Ander Biguri, Hussein Towsyfyan CAD informed reconstruction mathods
- The whole  $\mu$ -VIS team

WWW.southampton.ac.uk/muvis Multiscale, Multidisciplinary, Microtomographic Volume Imaging at Southampton

### Take home message:

- Getting good results means having:
  - A good understanding as to the needs of the project
  - Equipment required to do the job and understand its capabilities/limitations
  - Being able to do more with reconstruction methods, data extraction and image processing
  - An experienced team of operators

U-VIS Multiscale, Multidisciplinary, Microtomographic Volume Imaging at Southampton



